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Summary. A time-heterogeneous stochastic process is used to describe the rate of approach to homozygosity, the 
expected time to fixation or loss and the ultimate probability of survival of a gene or type in a haploid population 
whose size is a Poisson random variable. 

1. Intoduction 
In a previous study, Cook and Nassar (t972a) and 

Nassar and Cook (1973) investigated the t ime to fixa- 
tion or extinction of a gene and its probabil i ty  of 
survival in a haploid population whose size was 
assumed to be a Poisson random variable with homo- 
geneous parameter .  In nature  there are cases where 
a population size m a y  be cyclic over t ime (Elton and 
Nicholson, t952; Odum, 1959}. Also situations might 
exist when a population grows in size in a new en- 
vironment  and then stabilizes due to limited resour- 
ces. I t  is possible also that  a stable population might 
encounter an environmental  situation which causes 
it to decrease in size. Situations of this sort, where 
the average population size is variable over time, are 
best represented by a heterogeneous branching pro- 
cess where the average progeny number  per individual 
can vary  from generation to generation. There have 
been previous studies on the probabil i ty of survival 
of a gene using heterogeneous branching processes 
(Koutsky,  1962; Koj ima and Kelleher, t962; Pollak, 
t966; and others). However, the limiting factor in 
these studies is the assumption of infinite population 
size. 

The purpose of this note is to show how the same 
model in Nassar and Cook (t973) can be easily adapt-  
ed to a heterogeneous case of varying average pro- 
geny number  and to investigate the rate  of approach 
to homozygosity.  

2. Probability of Transition 

Referring to Nassar and Cook (t973), we can ex- 
press equation (3.2) in the form: 
X ~  (k, m) ~- I - -  exp [ - -k~( t )J  + exp [ - - k~ ( t )  

- ( m  - k)  & ( t ) l  - e x p  - (2.1) 
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where 

o,2(t) 
= .  (t) } 
= o,(t) (t - / 
= or (t - -e-~(*+'))  [ (2.2) 

o, . ( t )  = o,(t) ( t  - e x p  + t)3 

The same type of equation is true of fl,(t), i = t ,  2, 
.... n. Note here that  a and/5 are allowed to vary  from 
generation to generation. The sequences {0%(t)} and 
{/5~(t)} are decreasing sequences bounded below by  
zero. The ul t imate probabil i ty of absorption is one 
[lim XT(k ,  m) - Oj if zero is the limit over n for both 

or either of a,(t)  and ft,(t), otherwise it is less than t. 
This is easily seen from inspection of (2.1). From 
(2.2), it is seen tha t  

l imo%(t) = L~(t) = c~(t) (1 - -  e - L a  ('+')) �9 (2.3) 
~--->OO 

Therefore, it is sufficient to consider the case t -~  0. 

Because of the recursive relationship between the 
limits and the arbi t rary  nature of the sequences, 
~.(t) and/5.(t), it is difficult to use (2.3) to determine 
necessary and sufficient conditions for absorption to 
occur with probabil i ty  1. However, under rather  mild 
restrictive conditions it can be shown (see Cook and 
Nassar, 1972b) that  

lira a~(O) = 0 

if and only if 

i l l -  ~ = o  = oo 
V ~ O  

when (2.4) holds, it follows immediately tha t  

I im X~(k, m) = 0 for all t .  

The same is true of/5(t). 

(2.4) 
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Using (2.4) it is easily seen that  if a(t) is constant 
(c~) after some finite initial period of time, absorption 
occurs with probabili ty one if and only if 0 ~ ca < 1. 
This is the same condition as shown by Cook and 
Nassar (1972a). Note that  (2.4) is satisfied if lira a(t) 
= % 0 < c~ < t .  I f  l ima(t)  =- G =- t, then for 
(2.4) to be satisfied the convergence of a(t) must be 
relatively fast. An example would be a(t) = I + 
ce -kt. On the other hand a ( t ) =  t + 2 / t  is an 
example of a sequence converging to t for which (2.4) 
is not satisfied. 

As stated in the introduction, some populations 
might be cyclic in their size pat tern over time. As- 
suming a(t) = a(t + cn), ~(t) ~- fl(t + cn), n = O, t ,  
2 .. . . .  (2.1) can be writ ten in the form 

X~"(k, m) = t -- exp (--ka~,(t)) + exp (--ka~,(t) 

-- (m --  k) fl~.(t)) --  exp (--  (m --  k) fi~.(t)) (2.5) 

where c is the cycle length and n is the cycle number. 
In expression (2.5) 

(2.6) 

The sequence {a~(t)} is a decreasing sequence and 
has a limit. Taking the limit on both  sides of (2.6) 
we get 

L~c(t) ~-a(t)  [t  - - e x p  [ - -a ( t  + 1 ) [ 1 -  exp[--a( t  + 2) 

�9 �9 b 

(2.7) 
From (2.7), 

c 

L ~ ( t ) - - O  if / 7 ~ ( i ) ~ 1 .  
i ~ 0  

The proof follows closely that  of (2.4). Analogous 
expressions, of course, hold for fi~,(t) and La~(t ). 

Expression (2.4) is satisfied if 
c 

H a ( i )  _< t .  
i = 0  

Thus, for populations which are cyclic in their size 
pat terns over time a necessary and sufficient con- 
dition for absorption to occur with probabili ty t is 
tha t  the product of the average progeny numbers per 
individual of at least one type in the population be 
less than or equal to t .  

Under this model expressions for the ultimate pro- 
bability of fixation or loss and the expected time to 
absorption can be easily obtained by using the se- 
quences defined by  (2.2) and the expressions given 
in sections 4 and 5 of Nassar and Cook (t973). The 
procedure is to simply replace ft, and a n in Nassar 
and Cook (t973) by  fi~(t) and an(t) respectively. These 

expressions will not be restated here. The extension 
to more than two types is also immediate and can be 
obtained from Section 6 in Nassar and Cook (t973) 
by  replacing a~,n and/3~,~ by ak,~(t) and flk,~(t). 

3. R a t e  o f  A p p r o a c h  to  H o m o z y g o s i t y  

The theory of finite Markov chains enables one to 
say that  the probabili ty that  both  types of individuals 
are present in the nth generation is assymptotically 
of the order of 

c(k) Z" n ~ oo (3.t) 

for some 0 ~ 2 ~ I where c(k) is independent of n and 
depends only on the initial population configuration. 
The number ~ is commonly called the rate of approach 
to homozygosity. I t  indicates that  the extent  of 
heterozygosity decreases essentially by a constant 
factor of 2 per generation. This theory is applicable 
only to finite Markov chains and, unfortunately,  an 
analogous theory for the case of an infinite chain is 
not available. That  is, under this model, we are not 
assured that  X~(k, m) (the probabili ty that  both types 
of individuals are present in the nth generation) is 
always of the order of (3A). In what follows, when 
X~(k, m) is of the order [(n), we shall refer to the rate 
of approach to homozygosity provided/(n)  is of the 
form (3.t); otherwise, we shall use ](n) itself as a 
measure of the extent  of heterozygosity. 

Expanding each exponential function in (2.t) for 
t = 0, it is seen that  the convergence of X](k, m) is 
controlled by the dominant term, a,(0)fl~(0). Also, 
it is seen that  an(0 ) ft,(0) is of the order of 

EAnB,] -x n --~ oo (3.2) 
where 

B , =  ~(~ and A , ~  c,(j)" 
v = 0  i = 0  v = O / = 0  

Using (3.2) we now consider the rate of approach 
to homozygosity for three important  special cases. 
Notice that  if (3.2) is of the order [(n) then so is 
x~(k, m). 

a) l ima(t) -~ c a ~ I and l imE(t  ) = @ ~ 1 - Here 
t t 

it is seen that  (3.2) and (therefore X~(k, m)) is of the 
order (Gca) n as n --~ oo. Therefore, as in the case of a 
finite Markov chain, the extent  of heterozygosity de- 
creases essentially by a constant factor (c~ca) per 
generation. 

b) G = ca ~- I -- In this situation, it is difficult to 
present the rate of approach to homozygosity in a 
form that  is more meaningful than (3.2). However, 
if we at tach the conditions 

co I oo t 
0<H <oo and (3.3/ 

then it can be shown that  (3.2) is of the order (t/n) 2 
as n --. oo. I t  is felt that  in most cases of practical 
interest (3.3) will be satisfied. For example, let 
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(t) = t + x e  -at ( i t > 0 ,  x J 0 ) .  Here it is easily 
verified that (3.3) is satisfied and therefore X~(k, m) 
is of the order (t/n) 2 as n -+ oo. These forms were 
used by Kimura and Ohta (t969) to investigate the 
probability of fixation of a mutant  gene in a finite 
population when selective advantage decreases with 
time. 

c) ~x(t) = o~(t + cn), fl(t) = fl(t + cn) --  In this 
case, it is convenient to consider X~'* rather than X~; 
that  is, we will consider the rate of approach to homo- 
zygosity on a per cycle rather than a per generation 
basis. Let 

c c 

P~ = Hob(t) and P~ = l i f t ( t ) .  

If  p~ < l and :b e < t, it can be shown that  (3.2) is of 
the order (p~p~)n and therefore, the rate per cycle 
of approach to homozygosity is p~p~. If p~ = Pa = t 
then X~ ~ is of the order (t/n) 2. 

I t  should be noted that the rate of approach to 
homozygosity can be easily determined for any com- 
bination of the above cases. For example, if c~ < I 
and c a -- t then X~ is of the order c~/n. 

4. Discussion 

To demonstrate the effect a variable number of 
progeny from generation to generation would have 
on the dynamics of a mutant  gene, we evaluated (for 
certain a(t) and fl(t) values) the expected time to 
fixation, given that fixation occurs, and the ultimate 
probability of fixation. The results were compared 
with the homogeneous case. The ultimate probability 
of fixation is given as 

o o  

i=1 
and the expected time to fixation, given that the gene 
is ultimately fixed, as 

E,(a = i Di(< .,)/D,(< . , )  
/'=1 

A selectively neutral gene in a population of initial 
size t 00 which is non-cyclic (o~ = fl = t) has an ulti- 
mate probability of fixation/z x of .00994 and an ex- 
pected time to fixation t, of t93. If we choose the 
average number of progeny for the gene to be cyclic 
every two generations with a(0) = 2, ~(t) ---- .5 and 
fl(0) ---- fl(l) = 1, the ultimate probability of fixation 
is found to be .0t13 and the time to fixation to be 
t95.2. Thus very little increase in/~, and t, has been 
achieved inspite of the drastic fluctuation in the 
selection intensity of the gene. However, if the aver- 
age number of progeny is cyclic for the population as 
a whole, (o~(0) =/~(0) = 2 and o~(t) = f( l)  = t/2) then 
# ,  is found to be .00994 and t, 259.3. Hence, a noti- 
ceable increase in t x results when tile population 
oscillates as a unit. In another example where a cycle 
occurs every 6 generations with fl(t) = o~(t) = (4, {, 

4)" t = 0, t, 5 the time to fixation was de- 

creased from that of the homogeneous case (t, = 
= t34.3). Also a small decrease in the ultimate prob- 
ability of fixation (/~ = .0098) was observed. If 
the mutant  gene is cyclic, but not the rest of the popu- 
lation (fl(t) = 1), the results show that t~ is not affect- 
ed (t, = 194.8), but /,, is decreased (#, = .0068). 
These two examples illustrate that a mutant  gene, 
that  may be neutral on the average over a cycle, can 
in effect become advantageous or disadvantageous 
depending on its pattern of oscillation. If the gene 
occurs at the point in time when its average number 
of progeny is decreasing before it increases again in 
the cycle, then the gene is going to be on the average 
selected against and vice versa. As our second 
example points out, even a gene that occurs at a point 
in time where an expansion is taking place can still be 
selected against if contraction is for a relatively long 
number of generations thereafter. The above argu- 
ment is general in that  it applies also to genes that  
are not selectively neutral. The time to fixation of a 
mutant  gene is seen to increase or decrease (from the 
case of constant fitness) depending on the pattern of 
oscillation in the population. The effect of cycling 
on the time of fixation is most pronounced when the 
population oscillates as a whole. Oscillation in the 
fitness of the mutant  gene alone has little effect on 
its time to fixation. 

Fossil records indicate that a large percentage (i.e., 
probably about 99%) of once existent populations 
are now extinct. Extinction of natural populations 
would, therefore, seem to be the rule rather than the 
exception. Also, it is generally concluded that ex- 
tinction usually occurs after the population has been 
fixed in one pure type. For fixation to occur with 
probability one, under this model, we must have 
lira 0~(t) < I for at least r --  t of the types in the po- 

t 
pulation. Furthermore, it can be shown that, if 
l ima(t )  = I for all types then the expected time to 

t 
extinction is infinite. Thus, it would seem that in 
most populations we would expect limos(t) < I ;  for 

otherwise there would probably be a much smaller 
percentage of once existent populations now extinct. 

In the two-type case, the probability that the pro- 
cess is transient in generation n was found to be of the 
order 

(c~ca) ~ if l ima(t )  = c ~ < t  and limfl(t) = c ~ < 1 ;  
t g 

(c~)~/n if c~ = 1; (ca)~/n if c~ = t and (l/n) ~if 

c,,, ~--- C.6, = '1 . 

In view of preceding comments, it would seem that 
the extent of heterozygosity decreases esentially by a 
constant factor per generation in most populations 
and that  the much slower rate of approach to homo- 
zygosity would be found only in a small percentage of 
populations. Analogous remarks can of course be 
made about populations that  are cyclic in nature. 
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When  the sequence of average p rogeny  is cyclic 
the  rate,  per generat ion,  of approach  to  homozygos i t y  

is CL/p~p-~ a (p~ < t,  p~ < t). I t  is of interest  to  note  
t ha t  if the average p rogeny  number  per individual  for 
a non-cyclic  popula t ion  is chosen to  be cons tan t  and 
equal  to  the mean  of the p rogeny  numbers  within a 
cycle of a cyclic popula t ion ,  then the cyclic popu-  
lat ion will approach  homozygos i t y  at  a ra te  faster 
than  tha t  of the noncycl ic  popula t ion.  This follows 
by  the  familiar relat ion between ar i thmet ic  and 
geometr ic  means.  

The results of this model  are more  general than  they  
m i g h t  seem. We have found th rough  simulat ion 
(Cook and Nassar  t972) t ha t  se t t ing an upper  limit 
on popula t ion  g rowth  (the upper  limit was t aken  to 
be six t imes the initial popula t ion  size m) did no t  
al ter  the results of the  Poisson model.  Nassar  and  
Cook (1973) examined also b y  s imulat ion the effects 
t h a t  a devia t ion f rom a Poisson p rogeny  dis tr ibut ion 
would have on the t ime to  f ixat ion and  on the prob- 
abil i ty of f ixat ion of a m u t a n t  gene. T h e y  found  in 
the case of a negat ive  binomial  p rogeny  dis t r ibut ion 
wi th  a var iance equal to  twice the mean,  t ha t  the  t ime 
to  f ixat ion and the probabi l i ty  of f ixat ion agreed well 
with those of the Poisson case. In  all likelihood, our  
results are good  approximat ions  to real s i tuat ions  
when independence in reproduct ion  among  individuals 
is in effect and  when the var iance of the p rogeny  
dis t r ibut ion is no t  much  larger t han  the  mean.  The 
assumpt ion  of independence is p robab ly  met  in un- 
c rowded popula t ions  or in those where resources are 
no t  a l imit ing factor.  Also in a popula t ion  of small 
initial size where a l imita t ion in food and/or  space is 

no t  likely to be of immedia te  consequence. We do no t  
know how good our results would be in approx imat -  
ing s i tuat ions where selection th rough  compet i t ion  is 
p redominant .  Hence, it is desirable to fur ther  exa- 
mine our model  in the light of this possibility. 
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